Publications

BOOK CHAPTERS

  1. “Solubility Measurements for CO2 and Methane Mixtures in Water and Aqueous Electrolyte Solutions Near Hydrate Conditions,” Ying Irene Zhang, Pallav Jain, Roger Chen, Douglas Elliot, Kyoo Song, Walter Chapman, Riki Kobayashi, and Heng-Joo Ng published in “Advances in the Study of Gas Hydrates,” Editors: Charles E. Taylor and Jonathan T. Kwan, Springer (2004). 
  2. “Applications of the SAFT Equation of State to Asphaltene Precipitation under Pressure Depletion and Gas Injection,” P. David Ting, Doris Gonzalez, George Hirasaki, and Walter G. Chapman published in Asphaltenes, “Heavy Oils and Petroleomics,” Editors: OC Mullins, EY Sheu, A Hammami, and AG Marshall (2006).
  3. “Application of Mesoscale Field-Based Models to Predict Stability of Particle Dispersions in Polymer Melts,” Prasanna K. Jog , Valeriy V. Ginzburg, Rakesh Srivastava, Jeffrey D. Weinhold, Shekhar Jain, and Walter G. Chapman, published in “Advances in Chemical Engineering – Thermodynamics and Kinetics of Complex Systems,” Vol. 39, Editors: David H. West and Gregory Yablonsky (2010). 
  4. “Thermodynamic Perturbation Theory for Associating Molecules,” Bennett D. Marshall and Walter G. Chapman, Advances in Chemical Physics, Vol. 160, 1-47, Editors:  Stuart A. Rice and Aaron R. Dinner (2016). 
  5. “Electrolyte Solutions: Standard State Partial Molar Enthalpies of Aqueous Solution up to High Temperatures,” Essmaiil Djamali and Walter G. Chapman, published in “Enthalpy and Internal Energy: Liquids, Solutions and Vapours,” Editors: Emmerich Wilhelm, Trevor Letcher, Royal Society of Chemistry (2017). 

PUBLICATIONS (In Reverse Chronological Order)

  1. Thiago J. Pinheiro dos Santos, Carla C. Fraenza, Casey Walsh, Steve G. Greenbaum, Walter G. Chapman, Dilipkumar N. Asthagiri, Philip M. Singer, “Molecular-level insights into the NMR relaxivity of gadobutrol using quantum and classical molecular simulations,” Chem. & Biomed. Imaging, 5(1), 6–17 (2025). 
  2. Arjun Valiya Parambathu, Thiago J. Pinheiro dos Santos, Walter G. Chapman, George J. Hirasaki, Dilipkumar N. Asthagiri, Philip M. Singer “Molecular Modes Elucidate the Nuclear Magnetic Resonance Relaxation of Viscous Fluids,” J. Phys. Chem. B, 128, 8017-8028 (2024).
  3. Thiago J. Pinheiro dos Santos, Betul Orcan-Ekmekci, Walter G. Chapman, Philip M. Singer, and Dilipkumar N. Asthagiri, “Theory and modeling of molecular modes in the NMR relaxation of fluids,” J. Chem. Phys., 160, 064108 (2024).
  4. C.J. Sisco, M.M. Alajmi, M.I.L. Abutaqiya, F.M. Vargas, W.G. Chapman, “Cubic-Plus-Chain IV: A General Framework for the SAFT-Based Chain plus Association Modification to the Cubic Equation of State,” Ind. & Eng. Chem. Res., 62, 20899-20910 (2023)
  5. A Valiya Parambathu, WG Chapman, GJ Hirasaki, D Asthagiri, PM Singer “Effect of Nanoconfinement on NMR Relaxation of Heptane in Kerogen from Molecular Simulations and Measurements,” J. Phys. Chem. Let., 14, 1059-1065 (2023)
  6. J Lu, A González de Castilla, S Müller, S Xi, WG Chapman, “Dualistic Role of Alcohol in Micelle Formation and Structure from iSAFT Based Density Functional Theory and COSMOplex,” Ind. & Eng. Chem. Res., 62, 1968-1983 (2023)
  7. S Gupta, JR Elliott, A Anderko, J Crosthwaite, WG Chapman, CT Lira, “Current Practices and Continuing Needs in Thermophysical Properties for the Chemical Industry,” Ind. & Eng. Chem. Res., 62, 3394-3427 (2023)
  8. W.G. Chapman and W.A. Fouad, “Beyond Flory–Huggins: Activity Coefficients from Perturbation Theory for Polar, Polarizable, and Associating Solvents to Polymers,” Ind. & Eng. Chem. Res., 61, 17644-17664 (2022)
  9. RS Adhikari, AV Parambathu, WG Chapman, DN Asthagiri, “Hydration free energies of polypeptides from popular implicit solvent models versus all-atom simulation results based on molecular quasichemical theory,” J. Phys. Chem. B.,126, 9607-9616 (2022)
  10. S Gupta, JR Elliott, A Anderko, J Crosthwaite, WG Chapman, “Thermophysical Properties for Chemical Industry,” Ind. & Eng. Chem. Res., 61, 15447-15448 (2022)
  11. CT Lira, JR Elliott, S Gupta, WG Chapman, “Wertheim’s Association Theory for Phase Equilibrium Modeling in Chemical Engineering Practice,” Ind. & Eng. Chem. Res., 61, 15678-15713 (2022)
  12. A Kamil, WA Fouad, SK Gupta, WG Chapman, “Phase Equilibrium of Cross-Associating Mixtures Using Association Theory-Based Equation of State,” Ind. & Eng. Chem. Res., 61, 15639-15648 (2022)
  13. MM Alajmi, CJ Sisco, MIL Abutaqiya, FM Vargas, WG Chapman, “Extension of Cubic-Plus-Chain Equation of State: Incorporating Short-Range Soft Repulsion for Nonassociating Mixtures,” Ind. & Eng. Chem. Res., 61, 8293-8301 (2022)
  14. Arjun Valiya Parambathu, Thiago J Pinheiro dos Santos, Walter G Chapman, Dilipkumar N Asthagiri, “Comment on “Calculation of Solid–Fluid Interfacial Free Energy with Consideration of Solid Deformation by Molecular Dynamics,” J. Phys. Chem. A.,126, 1782-1783 (2022)
  15. S Xi, Y Zhu, J Lu, WG Chapman, “Block copolymer self-assembly: Melt and solution by molecular density functional theory,” J. Chem. Phys., 156, 054902 (2022)
  16. Thiago J Pinheiro Dos Santos, Arjun Valiya Parambathu, Carla C Fraenza, Casey Walsh, Steve G Greenbaum, Walter G Chapman, Dilip Asthagiri, Philip M Singer, “Thermal and concentration effects on 1 H NMR relaxation of Gd 3+-aqua using MD simulations and measurements,” Phys. Chem. Chem. Phys., 24, 27964-27975 (2022)
  17. W.G. Chapman and W.A. Fouad, “Activity Coefficients from an Equation of State: Novel Approach for Fast Phase Equilibrium Calculations,” Ind. & Eng. Chem. Res., 60, 17733-17744 (2021)
  18. Y. Zhu and W.G. Chapman, “Phase behavior and percolation in mixed patchy colloids,” J. Chem. Phys. 154, 134901 (2021).
  19. Philip M Singer, Arjun Valiya Parambathu, Thiago J Pinheiro Dos Santos, Yunke Liu, Lawrence B Alemany, George J Hirasaki, Walter G Chapman, and Dilip Asthagiri, “Predicting 1 H NMR relaxation in Gd 3+-aqua using molecular dynamics simulations,” Phys. Chem. Chem. Phys., 23,  20974-20984 (2021).
  20. Y. Khemka, M.I.L. Abutaqiya, W.G. Chapman, and F.M. Vargas, “One-parameter friction theory viscosity model for the cubic-plus-chain equation of state,” Fluid Phase Equilibria, (2021).
  21. A. Haghmoradi, D. Ballal, and W.G. Chapman, “Combination of monovalent and divalent sites on an associating species: Application to water,” AIChE J., (2021).
  22. Y. Khemka, M.I.L. Abutaqiya, W.G. Chapman, and F.M. Vargas, “Accurate prediction of the viscosity of light crude oils using one-parameter friction theory: Effect of crude oil characterization methods and property correlations,” Fuel, (2021).
  23. Y. Khemka, M.I.L. Abutaqiya, W.G. Chapman, and F.M. Vargas, “Viscosity Modeling of Light Crude Oils under Gas Injection Using One-Parameter Friction Theory,” Ind. & Eng. Chem. Res., (2020).
  24. D. Asthagiri, W.G. Chapman, G.J. Hirasaki, and P.M. Singer, “NMR 1H–1H Dipole Relaxation in Fluids: Relaxation of Individual 1H–1H Pairs versus Relaxation of Molecular Modes,” J. Phys. Chem. B, (2020).
  25. A. Haghmoradi, B.D. Marshall, and W.G. Chapman, “Beyond Wertheim’s Multi-density Theory: Steric Hindrance and Associated Rings in a Two-Density Formalism for Binary Mixtures of Molecules with Two Associating Sites,” J. Chem. Eng. Data, (2020).
  26. Y. Khemka, C.J. Sisco, M.I.L. Abutaqiya, W.G. Chapman, and F.M. Vargas, “One-parameter friction theory viscosity model for the cubic-plus-chain equation of state,” Fluid Phase Equ., 112896 (2020).
  27. M. Alhosani, D. Asthagiri, M. Puerto, and W.G. Chapman, “Insights into the mechanisms affecting water/oil interfacial tension as a function of salt types and concentrations,” Fluid Phase Equ., 522, 112771 (2020).
  28. C.J. Sisco, M.M. Alajmi, M.I.L. Abutaqiya, F.M. Vargas, and W.G. Chapman, “Cubic-Plus-Chain III: Modeling Polymer–Solvent Phase Behavior with the Chain-Modified Cubic Equation of State,” Ind. & Eng. Chem. Res., 59, 15752-15757 (2020).
  29. Y. Zhang, S. Xi, A.V. Parambathu, and W.G. Chapman, “Density functional study of one-and two-component bottlebrush molecules in solvents of varying quality,” Mol. Phys., 118, e1767812 (2020).
  30. A. Valiya Parambathu, P.M. Singer, G.J. Hirasaki, W.G. Chapman, and D. Asthagiri, “Critical Role of Confinement in the NMR Surface Relaxation and Diffusion of n-Heptane in a Polymer Matrix Revealed by MD Simulations,” J. Phys., Chem. B, 124, 3801-3810 (2020).
  31. S. Xi, J. Liu, A. Valiya Parambathu, Y. Zhang, and W.G. Chapman, “An Efficient Algorithm for Molecular Density Functional Theory in Cylindrical Geometry: Application to Interfacial Statistical Associating Fluid Theory (iSAFT),” Ind. & Eng. Chem. Res., 59, 6716-6728 (2020).
  32. Philip M. Singer, Arjun Valiya Parambathu, Xinglin Wang, Dilipkumar Asthagiri, Walter G. Chapman, George J. Hirasaki, and Marc Fleury, “Elucidating the 1H NMR Relaxation Mechanism in Polydisperse Polymers and Bitumen using Measurements, MD Simulations, and Models,” J. Phys. Chem. B, 124, 4222–4233 (2020).
  33. Matheus von Linsingen Tavares, Wanderson R Giacomin-Junior, Luciana Porto de Souza Vandenberghe, Walter G. Chapman, and Marcos L Corazza, “Phase-Equilibrium Measurements and Thermodynamic Modeling of CO2 + Geraniol, CO2 + Geraniol + Acetic Acid, and CO2 + Geraniol + Ethyl Acetate,” J. Chem. Eng. Data, 65, 1721-1729 (2020).
  34. Y. Zhu, A. Bansal, S. Xi, J. Lu, and W.G. Chapman, “Self-assembly and phase behavior of mixed patchy colloids with any bonding site geometry: theory and simulation,” Soft Matter, 16, 3806-3820 (2020).
  35. C. Liu, F. Frank, C. Thiele, F.O. Alpak, S. Berg, W. Chapman, B. Riviere, “An efficient numerical algorithm for solving viscosity contrast Cahn–Hilliard–Navier–Stokes system in porous media,” Journal of Computational Physics 400, 108948 (2020).
  36. Jinlu Liu, Michaela Heier, Walter G. Chapman, and Kai Langenbach, “Adsorption in Purely Dispersive Systems from Molecular Simulation, Density Gradient Theory, and Density Functional Theory,” J. Chem. Eng. Data, 65, 1222-1233 (2020).
  37. Yuchong Zhang and Walter G. Chapman, “Modeling Lower Critical Solution Temperature Behavior of Associating Dendrimers Using Density Functional Theory,” Langmuir, 35, 10808-10817 (2019).
  38. Arjun Valiya Parambathu, Le Wang, Dilip Asthagiri, and Walter G. Chapman, “Apolar Behavior of Hydrated Calcite (1014) Surface Assists in Naphthenic Acid Adsorption,” Energy & Fuels, 33, 6119-6125 (2019).
  39. Hassan S. Alasiri, Abdullah S. Sultan, and Walter G. Chapman, “Effect of Surfactant Headgroup, Salts, and Temperature on Interfacial Properties: Dissipative Particle Dynamics and Experiment for the Water/Octane/Surfactant System,” Energy & Fuels, 33, 6678-6688 (2019).
  40. Jinlu Liu, Shun Xi, and Walter G. Chapman, “Competitive Sorption of CO2 with Gas Mixtures in Nanoporous Shale for Enhanced Gas Recovery from Density Functional Theory,” Langmuir, 35, 8144-8158 (2019).
  41. Caleb J. Sisco, Mohammed I. L. Abutaqiya, Francisco M. Vargas, and Walter G. Chapman, “Cubic-Plus-Chain (CPC). II: Function Behavior of the Chain-Modified Cubic Equation of State,” Ind. & Eng. Chem. Research, 58, 8810-8816 (2019).
  42. Amin Haghmoradi and Walter G. Chapman, “Bond cooperativity and ring formation in hydrogen fluoride thermodynamic properties: A two-density formalism framework,” J. Chem. Phys., 150, 174503 (2019).
  43. Caleb J. Sisco, Mohammed I. L. Abutaqiya, Francisco M. Vargas, and Walter G. Chapman, “Cubic-Plus-Chain (CPC). I: A Statistical Associating Fluid Theory Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules,” Ind. & Eng. Chem. Research, 58, 7341-7351 (2019).
  44. Shun Xi, Le Wang, Jinlu Liu, and Walter G. Chapman, “Thermodynamics, Microstructures, and Solubilization of Block Copolymer Micelles by Density Functional Theory,” Langmuir, 35, 5081-5092 (2019).
  45. Jinlu Liu and Walter G. Chapman, “Thermodynamic Modeling of the Equilibrium Partitioning of Hydrocarbons in Nanoporous Kerogen Particles,” Energy & Fuels, 33, 891-904 (2019).
  46. Artee Bansal, Dilip Asthagiri, and Walter G. Chapman, “A cluster size distribution theory to study the thermodynamics and phase behavior of multi-bonding single site solutes in patchy colloidal mixtures,” Soft Matter, 14, 7469-7482 (2018).
  47. Xiaoqun Mu, Florian Frank, Beatrice Riviere, Faruk Omer Alpak, Walter G Chapman, “Mass-conserved density gradient theory model for nucleation process,” Ind. Eng. Chem. Res., 57, 16476-16485 (2018).
  48. Simon Stephan, Jinlu Liu, Kai Langenbach, Walter G Chapman, Hans Hasse, “Vapor-Liquid Interface of the Lennard-Jones Truncated and Shifted Fluid: Comparison of Molecular Simulations, Density Gradient theory, and Denstiy Functional Theory,” J. Phys. Chem. C, 122, 24705-24715 (2018).
  49. Q. Guan, A. Goharzadeh, J. C. Chai, F. M. Vargas, S. L. Biswal, W. G. Chapman, M. Zhang, Y. F. Yap, “An integrated model for asphaltene deposition in wellbores/pipelines above bubble pressures,” J. Petrol. Sci. and Eng., 169, 353-373 (2018).
  50. Yuchong Zhang, Arjun Valiya Parambathu, and Walter G. Chapman, “Density functional study of dendrimer molecules in solvents of varying quality,” J. Chem. Phys., 149, 064904 (2018).
  51. Q. Guan, J. C. Chai, A. Goharzadeh, F. M. Vargas, S. L. Biswal, W. G. Chapman, M. Zhang, Y. F. Yap, “A unidirectional one-dimensional approach for asphaltene deposition in large length-to-diameter ratios scenarios,” J. Petrol. Sci., 166, 857-870 (2018).
  52. Zhengzheng Feng, Sai. R. Panuganti, and Walter G. Chapman, “Predicting solubility and swelling ratio of blowing agents in rubbery polymers using PC-SAFT Equation of State,” Chemical Engineering Science, 183, 306-328 (2018).
  53. Xiaoqun Mu, Shun Xi, Faruk O. Alpak, and Walter G. Chapman, “Modified Density Gradient Theory for Surfactant Molecules Applied to Oil/Water Interfaces,” I&EC Research, 57, 7643-7654 (2018).
  54. Philip M. Singer, Dilip Asthagiri, Walter G. Chapman, and George Hirasaki, “NMR spin-rotation relaxation and diffusion of methane,” J. Chem. Phys., 148, 204504 (2018).
  55. Philip M. Singer, Dilip Asthagiri, Zeliang Chen, Arjun Valiya Parambathu, George Hirasaki, and Walter G. Chapman, “Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons,” J. Chem. Phys., 148, 164507 (2018).
  56. Yuchong Zhang and Walter G. Chapman, “Modeling Thermodynamic Properties of Isomeric Alkanes with a New Branched Equation of State,” I&EC Research, 57, 1679-1688 (2018).
  57. Michaela Heier, Simon Stephan, Jinlu Liu, Walter G. Chapman, Hans Hasse, and Kai Langenbach, “Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5 sigma based on perturbation theory and its applications to interfacial thermodynamics,” Molec. Phys., 116, 2083-2094 (2018).
  58. Jin Song, Y.C. Zeng, Le Wang, Xindi D. Duan, Maura Puerto, Walter G. Chapman, S.L. Biswal, George J. Hirasaki, “Surface complexation modeling of calcite zeta potential measurements in brines with mixed potential determining ions (Ca2+, CO32-, Mg2+, SO42-) for characterizing carbonate wettability,” J. Colloid and Int. Sci., Molec. Liq., 506, 169-179 (2017).
  59. Hassan Alasiri and Walter G. Chapman, “Dissipative particle dynamics (DPD) study of the interfacial tension for alkane/water systems by using COSMO-RS to calculate interaction parameters,” J. Molec. Liq., 246, 131-139 (2017).
  60. P. D. Dixit, Artee Bansal, Walter G. Chapman, and Dilip Asthagiri, “Mini-grand canonical ensemble: Chemical potential in the solvation shell,” J. Chem. Phys., 147, 164901 (2017).
  61. Jinlu L. Liu, Le Wang, Shun Xi, Dilip Asthagiri, and Walter G. Chapman, “Adsorption and Phase Behavior of Pure / Mixed Alkanes in Nanoslit Graphite Pores: An iSAFT Application,” Langmuir, 33, 11189-11202 (2017).
  62. Artee Bansal, Walter G. Chapman, and Dilip Asthagiri, “Quasichemical theory and the description of associating fluids relative to a reference:  Multiple bonding of a single site solute,” J. Chem. Phys., 147, 124505 (2017).
  63. Mesude Ozturk, Sai R. Panuganti, Kai Gong, Francisco M. Vargas, and Walter G. Chapman, “Modeling natural gas-carbon dioxide system for solid-liquid-vapor phase behavior,” J. Nat. Gas. Sci. and Eng., 45, 738-746 (2017).
  64. Dilip Asthagiri, Arjun V. Parambathu, Deepti Ballal, and Walter G. Chapman, “Electrostatic and induction effects in the solubility of water in alkanes,” J. Chem. Phys. 147, 074506 (2017).
  65. Philip M. Singer, Dilip Asthagiri, Walter G. Chapman, and George J. Hirasaki, “Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water,” J. Mag. Res., 277, 15-24 (2017).
  66. Ali A. AlHammadi and Walter G. Chapman, “Modeling the Polystyrene-Asphaltenes-Toluene Mixture Using the Perturbed-Chain Form of Statistical Associating Fluid Theory Equation of State,” Energy & Fuels, 31, 6019-6024 (2017).
  67. Artee Bansal, Arjun V. Parambathu, Dilip Asthagiri, Kenneth R. Cox, and Walter G. Chapman, “Thermodynamics of mixtures of patchy and spherical colloids of different sizes: A multi-body association theory with complete reference fluid information,” J. Chem. Phys., 146, 164904 (2017).
  68. Ali A. AlHammadi, Yi Chen, Andrew Yen, Jianxin Wang, Jeff Creek, Francisco M. Vargas, and Walter G. Chapman, “Effect of the Gas Composition and Gas/Oil Ratio on Asphaltene Deposition,” Energy & Fuels, 31, 3610-3619 (2017).
  69. Le Wang, Amin Haghmoradi, Jinlu Liu, Shun Xi, George J. Hirasaki, Clarence A. Miller, and Walter G. Chapman, “Modeling micelle formation and interfacial properties with iSAFT classical density functional theory,” J. Chem. Phys., 146, 124705 (2017).
  70. Essmaiil Djamali, Mason B. Tomson, and Walter G. Chapman, “Thermodynamic Properties and Solubility of Sodium and Potassium Chloride in Ethane-1,2-diol/Water Mixed Solvent Systems to High Temperatures,” J. Chem. and Eng. Data, 62, 1326-1334 (2017).
  71. Kai Gong, Sai R. Panuganti, and Walter G. Chapman, “Study of solubility and swelling ratio in polymer-CO2 systems using the PC-SAFT equation of state,” J. Applied Polymer Sci., 134, 44804 (2017).
  72. Xiaoqun Mu, Florian Frank, Faruk O. Alpak, and Walter G. Chapman, “Stabilized density gradient theory algorithm for modeling interfacial properties of pure and mixed systems,” Fluid Phase Equilibria, 435, 118-130 (2017).
  73. Pradeep Venkataraman, Kyriacos Zygourakis, Walter G. Chapman, Scott L. Wellington, and Michael Shammai, “Molecular Insights into Glass Transition in Condensed Core Asphaltenes, ”Energy & Fuels, 31, 1182-1192 (2017).
  74. Le Wang, Dilip Asthagiri, Yongchao Zeng, and Walter G. Chapman, “Simulation Studies on the Role of Lauryl Betaine in Modulating the Stability of AOS Surfactant-Stabilized Foams Used in Enhanced Oil Recovery,” Energy & Fuels, 31, 1512-1518 (2017).
  75. Amin Haghmoradi, Le Wang, and Walter G. Chapman, “A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding,” J. Phys-Cond Matter, 29, 044002 (2017).
  76. Artee Bansal, Dilip Asthagiri, Kenneth R. Cox, and Walter G. Chapman, “Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information,” J. Chem. Phys., 145, 074904 (2016).
  77. Essmaiil Djamali, Walter G. Chapman, and Kenneth R. Cox, “A Systematic Investigation of the Thermodynamic Properties of Aqueous Barium Sulfate up to High Temperatures and High Pressures,” J. Chem. Eng. Data, 61, 3585-3594 (2016).
  78. A.R. Saeger, J.K. Johnson, W.G. Chapman, and D. Henderson, “Cavity correlation and bridge functions at high density and near the critical point: a test of second-order Percus–Yevick theory,” Molec. Phys. 114, 1-7 (2016).
  79. Amin Haghmoradi, Le Wang, and Walter G. Chapman, “A new equation of state for associating Lennard–Jones fluids with two sites: small bond angle,” Molec. Phys., 114, 2548-2557 (2016).
  80. A. Hosseini, E. Zare, S. Ayatollahi, F.M. Vargas, W.G. Chapman, K. Kostarelos, and V. Taghikhani, “Electrokinetic behavior of asphaltene particles,” Fuel 178, 234-242 (2016).
  81. Sai R. Panuganti, Fei Wang, Walter G. Chapman, and Francisco M. Vargas, “A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons,” Int. J. Thermophys. 37 (7), 1-24 (2016).
  82. Amin Haghmoradi, Le Wang, and Walter G. Chapman, “A density functional theory for colloids with two multiple bonding associating sites,” J. Phys.: Cond. Matter 28, 244009 (2016).
  83. Wael A. Fouad, Amin Haghmoradi, Le Wang, Artee Bansal, Ali Al Hammadi, Dilip Asthagiri, Essmaiil Djamali, Kenneth R. Cox, and Walter G. Chapman, “Extensions of the SAFT model for complex association in the bulk and interface,” Fluid Phase Equilibria 416, 62-71 (2016).
  84. Marcos L. Corazza, Wael A. Fouad, and Walter G. Chapman, “PC-SAFT predictions of VLE and LLE of systems related to biodiesel production,” Fluid Phase Equilibria 416, 130-137 (2016).
  85. Wael A. Fouad, Le Wang, Amin Haghmoradi, Dilip Asthagiri, and Walter G. Chapman, “Understanding the Thermodynamics of Hydrogen Bonding in Alcohol-Containing Mixtures: Cross-Association,” J. Phys. Chem. B 120, 3388-3402 (2016).
  86. Essmaiil Djamali, Walter G. Chapman, and Kenneth R. Cox, “Prediction of the Standard State Partial Molar Volume of Aqueous Electrolytes to High Temperatures and High Pressures,” J. Chem. and Eng. Data, 60, 3792-3799 (2015).
  87. Marcos L. Corazza, Wael A. Fouad, and Walter G. Chapman, “Application of molecular modeling to the vapor-liquid equilibrium of alkyl esters (biodiesel) and alcohol systems,” Fuel, 161, 34-42 (2015).
  88. Wael A. Fouad, Le Wang, Amin Haghmoradi, Sumnesh K. Gupta, and Walter G. Chapman, “Understanding the Thermodynamics of Hydrogen Bonding in Alcohol-Containing Mixtures:  Self-Association,” J. Phys. Chem. B, 119, 14086-14101 (2015).
  89. Wael A. Fouad, Kyoo Song, and Walter G. Chapman, “Experimental Measurements and Molecular Modeling of the Hydrate Equilibrium as a Function of Water Content for Pressures up to 40 MPa,” I&EC Res., 54, 9637-9644 (2015).
  90. Qiang Sun, Xyqiang Guo, Walter G. Chapman, Aixian Liu, Lanying Yang, and Jingwen Zhang, “Vapor-hydrate two-phase and vapor-liquid-hydrate three-phase equilibrium calculation of THF/CH4/N-2 hydrates,” Fluid Phase Equilibria, 401, 70-76 (2015).
  91. Wael A. Fouad, Matt Yarrison, Kyoo Song, Kenneth R. Cox, and Walter G. Chapman, “High pressure measurements and molecular modeling of the water content of acid gas containing mixtures,” AICHE J., 61, 3038-3052 (2015).
  92. James M. Stevenson, Wael A. Fouad, David Shalloway, David Usher, Jonathon Lunine, Walter G. Chapman, Paulette Clancy, “Solvation of nitrogen compounds in Titan’s seas, precipitates, and atmosphere,” ICARUS, 256, 1-12 (2015).
  93. Deepti Ballal and Walter G. Chapman, “Competition between Intra- and Intermolecular Association of Chain Molecules with Water-like Solvent,” J. Phys. Chem. B, 119, 6792-6802 (2015).
  94. Ali Al Hammadi, Francisco M. Vargas, and Walter G. Chapman, “Comparison of Cubic-Plus-Association and Perturbed-Chain Statistical Associating Fluid Theory Methods for Modeling Asphaltene Phase Behavior and Pressure-Volume-Temperature Properties,” Energy & Fuels, 29, 2864-2875 (2015).
  95. Sayantan S. Chatterjee, Gaurav G. Bhatnagar, Brandon B. Dugan, Gerald R. Dickens, Walter G. Chapman, and George J. Hirasaki, “The impact of lithologic heterogeneity and focused flow upon gas hydrate distribution in marine sediments,” J. Geophys. Res. – Solid Earth, 119, 6705-6732 (2014).
  96. Deepti Ballal, Pradeep Venkataraman, Wael A. Fouad, Kenneth R. Cox, and Walter G. Chapman, “Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions,” J. Chem. Phys., 141, 064905 (2014).
  97. Mohammad Tavakkoli, Sai R. Panuganti, Vahid Taghikhani, Mahmoud Reza Pishvaie, and Walter G. Chapman,” Asphaltene Deposition in Different Depositing Environments: Part 2. Real Oil,” Energy Fuels, 28, 3594-3603 (2014).
  98. Mohammad Tavakkoli, Sai R. Panuganti, Francisco M. Vargas, Vahid Taghikhani, Mahmoud Reza Pishvaie, and Walter G. Chapman,” Asphaltene Deposition in Different Depositing Environments: Part 1. Model Oil,” Energy Fuels, 28, 1617-1628 (2014).
  99. Bennett D. Marshall, Amin Haghmoradi, and Walter G. Chapman, “Resummed thermodynamic perturbation theory for bond cooperativity in associating fluids with small bond angles: Effects of steric hindrance and ring formation,” J. Chem. Phys., 140, 164101 (2014).
  100. Wael A. Fouad, Deepti Ballal, Kenneth R. Cox, and Walter G. Chapman, “Examining Consistency of Water Content Data in Alkanes Using the Perturbed-Chain Form of the Statistical Associating Fluid Theory Equation of State,” J. Chem. Eng. Data, 59, 1016-1023 (2014).
  101. Mohammad Tavakkoli, Sai R. Panuganti, Vahid Taghikhani, Mahmoud Reza Pishvaie, and Walter G. Chapman, “Precipitated Asphaltene Amount at High-Pressure and High-Temperature Conditions,” Energy Fuels, 28, 1596–1610 (2014).
  102. Clint P. Aichele, Walter G. Chapman, Lee D. Rhyne, Hariprasad J. Subramani, “Characterization of Water-in-Crude-Oil Emulsions in a Complex Shear Field,” Exptl. Thermal and Fluid Sci., 53, 190-196 (2014).
  103. Bennett D. Marshall and Walter G. Chapman, “Thermodynamic perturbation theory for self-assembling mixtures of divalent single patch colloids,” Soft Matter, 10, 5168-5176 (2014).
  104. Mohammad Tavakkoli, Vahid Taghikhani, Mahmoud Reza Pishvaie, Mohsen Masihi, Sai R. Panuganti, and Walter G. Chapman, “Investigation of Oil–Asphaltene Slurry Rheological Behavior,” J. Disp. Sci. and Tech., 35, 1155-1162 (2014).
  105. Aditya Agrawal, TaeHyun Yun, Stacy L. Pesek, Walter G. Chapman, and Rafael Verduzco, “Shape-responsive liquid crystal elastomer bilayers,” Soft Matter, 9, 1411-1415 (2014).
  106. Mohammad Tavakkoli, Sai R. Panuganti, Vahid Taghikhani, Mahmoud Reza Pishvaie, Walter G. Chapman, “Understanding the polydisperse behavior of asphaltenes during precipitation,” Fuel, 117, 206-217 (2014).
  107. Bennett D. Marshall, Walter G. Chapman, and Margarida M. Telo da Gama, “Classical density functional theory for associating fluids in orienting external fields,”  Phys. Rev. E, 88, 060301 (2013).
  108. Bennett D. Marshall and Walter G. Chapman, “Resummed thermodynamic perturbation theory for bond cooperativity in associating fluids,” J. Chem. Phys, 139, 214106 (2013).
  109. Bennett D. Marshall and Walter G. Chapman, “Thermodynamic perturbation theory for self-assembling mixtures of multi-patch colloids and colloids with spherically symmetric attractions,” Soft Matter, 9, 11346-11356 (2013).
  110. Bennett D. Marshall and Walter G. Chapman, “A density functional theory for patchy colloids based on Wertheim’s association theory:  Beyond the single bonding condition,” J. Chem. Phys., 138, 44901 (2013).
  111. Aditya Agrawal, Alin C. Chipara, Yousif Shamoo, Prabir K. Patra, Brent J. Carey, Pulickel M. Ajayan, Walter G. Chapman, and Rafael Verduzco, “Dynamic self-stiffening in liquid crystal elastomers,” Nature Communications, 4 (2013).
  112. Bennett D. Marshall and Walter G. Chapman, “Three new branched chain equations of state based on Wertheim’s perturbation theory,” J. Chem. Phys., 138, 174109 (2013).
  113. Bennett D. Marshall and Walter G. Chapman, “Thermodynamic perturbation theory for associating fluids with small bond angles: Effects of steric hindrance, ring formation, and double bonding,” Phys. Rev. E, 87, 52307 (2013).
  114. Bennett D. Marshall, Alejandro J. Garcia-Cuellar, and Walter G. Chapman, “A Monte Carlo density functional theory for the competition between inter and intramolecular association in inhomogeneous fluids,” J. Chem. Phys., 138, 204908 (2013).
  115. Sai R. Panuganti, Francisco M. Vargas, and Walter G. Chapman, “Property Scaling Relations for Nonpolar Hydrocarbons,” Ind. & Eng. Chem. Res., 52, 8009-8020 (2013).
  116. Y.V. Kalyuzhnyi, B.D. Marshall, W.G. Chapman, and P.T. Cummings, “Second-order resummed thermodynamic perturbation theory for central-force associating potential: Multi-patch colloidal models,” J. Chem. Phys., 139, 44909 (2013).
  117. Bennett D. Marshall and Walter G. Chapman, “Molecular theory for the phase equilibria and cluster distribution of associating fluids with small bond angles,” J. Chem. Phys., 139, 54902 (2013).
  118. Kai Gong, Bennett D. Marshall, and Walter G. Chapman, “Modeling lower critical solution temperature behavior of associating polymer brushes with classical density functional theory,” J. Chem. Phys., 139, 94904 (2013)
  119. Bennett D. Marshall and Walter G. Chapman, “Molecular theory for self assembling mixtures of patchy colloids and colloids with spherically symmetric attractions: The single patch case,” J. Chem. Phys., 139, 104904 (2013)
  120. Deepti Ballal and Walter G. Chapman, “Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface,” J. Chem. Phys., 139, 114706 (2013).
  121. Sai R. Panuganti, Mohammad Tavakkoli, Francisco M. Vargas, Doris L. Gonzalez, and Walter G. Chapman, “SAFT model for upstream asphaltene applications,” Fluid Phase Equilibria, 359, 2-16 (2013).
  122. Kai Gong, Bennett D. Marshall, and Walter G. Chapman, “Response behavior of diblock copolymer brushes in explicit solvent,” J. Chem. Phys., 137, 154904 (2012).
  123. Bennett D. Marshall, Deepti Ballal, and Walter G. Chapman, “Wertheim’s association theory applied to one site patchy colloids:  Beyond the single bonding condition,” J. Chem. Phys., 137, 129902 (2012).
  124. Anjushri S. Kurup, Jianxin Wang, Hariprasad J. Subramani, Jill Buckley, Jefferson L. Creek, and Walter G. Chapman, “Revisiting Asphaltene Deposition Tool (ADEPT):  Field Application,” Energy & Fuels, 26, 5702-5710 (2012).
  125. Bennett D. Marshall, Kenneth R. Cox, and Walter G. Chapman, “Supramolecular assembly and surfactant behavior of triblock rod-coil amphiphiles at liquid interfaces using classical density functional theory,” Soft Matter, 8, 7415-7425 (2012).
  126. Zhengzheng Feng and Walter G. Chapman, “Revisited Block Copolymer/Nanoparticle Composites: Extension of Interfacial Statistical Associating Fluid Theory,” Macromolecules, 45, 6658-6668 (2012).
  127. Sai R. Panuganti, Francisco M. Vargas, and Walter G. Chapman, “Modeling Reservoir Connectivity and Tar Mat Using Gravity-Induced Asphaltene Compositional Grading,” Energy & Fuels, 26, 2548-2557 (2012).
  128. Aditya Agrawal, Paul Luchette, Peter Palffy-Muhoray, Sibani L. Biswal, Walter G. Chapman, and Rafael Verduzco, “Surface wrinkling in liquid crystal elastomers,” Soft Matter, 8, 7138-7142 (2012).
  129. Bennett D. Marshall, Chris Emborsky, Kenneth Cox, and Walter G. Chapman, “Effect of Bond Rigidity and Molecular Structure on the Self-Assembly of Amphiphilic Molecules Using Second-Order Classical Density Functional Theory,” J. Phys. Chem. B, 116, 2730-2738 (2012).
  130. Bennett D. Marshall, Alejandro J. Garcia-Cuellar and Walter G. Chapman, “A perturbation density functional theory for the competition between inter and intramolecular association,” J. Chem. Phys., 136, 154103 (2012).
  131. Sai R. Panuganti, Francisco M. Vargas, Doris L. Gonzalez, Anjushri S. Kurup, and Walter G. Chapman, “PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior,” Fuel, 93, 658-669 (2012).
  132. Bennett D. Marshall, Kenneth R. Cox, and Walter G. Chapman, “A Classical Density Functional Theory Study of the Neat n-Alkane/Water Interface,: J. Phys. Chem. C, 116, 17641-17649 (2012).
  133. Bennett D. Marshall, Alejandro J. Garcia-Cuellar, and Walter G. Chapman, “A perturbation density functional theory for hydrogen bonding cyclic molecules,” Molec. Phys., 110, 2927-2939 (2012).
  134. Guangsheng Gu, Gerald R. Dickens, Gaurav Bhatnagar, Frederick S. Colwell, George J. Hirasaki, and Walter G. Chapman, “Abundant Early Palaeogene marine gas hydrates despite warm deep-ocean temperatures,” Nature Geoscience, 4, 848-851 (2011).
  135. Bennett D. Marshall and Walter G. Chapman, “Higher Order Classical Density Functional Theory for Branched Chains and Rings,” J. Phys., Chem. B, 115, 15036-15047 (2011).
  136. Anjushri S. Kurup, Francisco M. Vargas, Jianxin Wang, Jill Buckley, Jefferson L. Creek, Hariprasad J. Subramani, and Walter G. Chapman, “Development and Application of an Asphaltene Deposition Tool (ADEPT) for Well Bores,” Energy & Fuels, 25, 4506-4516 (2011).
  137. Kai Gong and Walter G. Chapman, “Solvent response of mixed polymer brushes,” J. Chem. Phys., 135, 214901 (2011).
  138. Alejandro J. Garcia-Cuellar and Walter G. Chapman, “Theory and simulation of chain molecules with multiple bonding sites in an associating solvent,” Molec. Phys., 109, 1911-1924 (2011).
  139. Alejandro J. Garcia-Cuellar and Walter G. Chapman, “Theory and simulation for associating cyclic molecules,” Molec. Phys., 109, 1813-1820 (2011).
  140. Zhengzheng Feng, Adam Bymaster, Chris Emborsky, Deepti Ballal, Bennett D. Marshall, Kai Gong, Alejandro Garcia, Kenneth R.Cox, Walter G. Chapman, “Insights into Associating Fluid Properties and Microstructure from Classical Density Functional Theory,” J. Stat. Phys., 145, 467-480 (2011).
  141. Zhengzheng Feng, Walter G. Chapman, “Contact values of highly asymmetric hard sphere mixtures from Fundamental Measure Density Functional Theory,” Molec. Phys., 109, 1717-1726 (2011).
  142. Christopher P. Emborsky, Kenneth R. Cox, Walter G. Chapman, “Exploring parameter space effects on structure-property relationships of surfactants at liquid-liquid interfaces,” J. Chem. Phys., 135, 084708 (2011).
  143. Sayantan Chatterjee, Gerald R. Dickens, Gaurav Bhatnagar, Walter G. Chapman, Brandon Dugan, Glen T. Snyder, George J. Hirasaki, “Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: A numerical modeling perspective,” J. Geophys., Res.-Solid Earth, 116, B09103 (2011)..
  144. Ane S. Avlund, Georgios M. Kontogeorgis, and Walter G. Chapman, “Intramolecular association within the SAFT framework,” Molec. Phys., 109, 1759-1769 (2011).
  145. Christopher P. Emborsky, Zhengzheng Feng, Kenneth R. Cox, and Walter G. Chapman, “Recent advances in classical density functional theory for associating and polyatomic molecules,” Fluid Phase Equ., 306, 15-30 (2011).
  146. Christopher P. Emborsky, Kenneth R. Cox, and Walter G. Chapman, “Correlation and Prediction of Water Content in Alkanes Using a Molecular Theory,” Ind. & Eng. Chem. Res., 50, 7791-7799 (2011).
  147. Gaurav Bhatnagar, Sayantan Chatterjee, Walter G. Chapman, Brandon Dugan, Gerald R. Dickens, and George J. Hirasaki, “Analytical theory relating the depth of the sulfate-methane transition to gas hydrate distribution and saturation,” Geochem. Geophys. Geosystems, 12, Q03003 (2011).
  148. Lloyd L. Lee, Guiseppe Pellicane, and Walter G. Chapman, “A star-function based density functional study of the adsorption of Lennard-Jones fluid near its supercritical states,” J. Supercritical Fluids, 55, 524-536 (2010).
  149. Adam Bymaster and Walter G. Chapman, “An iSAFT Density Functional Theory for Associating Polyatomic Molecules,” J. Phys, Chem. B, 114, 12298-122307 (2010).
  150. Francisco M. Vargas, Jefferson L. Creek, and Walter G. Chapman, “On the Development of an Asphaltene Deposition Simulator,” Energy and Fuels, 24, 2294-2299 (2010).
  151. Francisco M. Vargas and Walter G. Chapman, “Application of the One-Third rule in hydrocarbon and crude oil systems,” Fluid Phase Equilibria, 290, 103-108 (2010).
  152. Clint P. Aichele, Walter G. Chapman, Lee D. Rhyne, Hariprasad J. Subramani, Waylon House, “Analysis of Formation of Water-in-Oil Emulsions,” Energy and Fuels, 23, 3674-3680 (2009).
  153. Shekhar Jain, Valeriy V. Ginzburg, Prasanna Jog, Jeffrey Weinhold, Rakesh Srivastava, and Walter G. Chapman, “Modeling polymer-induced interactions between two grafted surfaces: Comparison between interfacial statistical associating fluid theory and self-consistent field theory,” J. Chem. Phys, 131, 044908 (2009).
  154. Francisco M. Vargas, Doris L. Gonzalez, George J. Hirasaki, and Walter G. Chapman, “Modeling Asphaltene Phase Behavior in Crude Oil Systems Using the Perturbed Chain Form of the Statistical Associating Fluid Theory (PC-SAFT) Equation of State,” Energy and Fuels, 23, 1140-1146 (2009).
  155. Francisco M. Vargas, Doris L. Gonzalez, Jefferson L. Creek, Jianxin Wang, Jill Buckley, George J. Hirasaki, and Walter G. Chapman, “Development of a General Method for Modeling Asphaltene Stability,” Energy and Fuels, 23, 1147-1154 (2009).
  156. Clint P. Aichele, Walter G. Chapman, Lee D. Rhyne, Hariprasad J. Subramani, Alberto Montesi, Jefferson L. Creek, Waylon House, “Nuclear Magnetic Resonance Analysis of Methane Hydrate Formation in Water-in-Oil Emulsions,” Energy and Fuels, 23, 835-841 (2009).
  157. Aleksandra Dominik, Walter G. Chapman, Robert D. Swindoll, David Eversdyk, Prasanna K. Jog, Rakesh Srivastava, “Compositional Polydispersity in Linear Low Density Polyethylene Ind. & Eng. Chem. Res., 48, 4127-4135 (2009).
  158. Shuqiang Gao, Walter G. Chapman, Waylon House, “Application of low field NMR T-2 measurements to clathrate hydrates,” J. Magnetic Resonance, 197, 208-212 (2009).
  159. Shekhar Jain and Walter G. Chapman, “Effect of confinement on the ordering of symmetric diblock copolymers: application of interfacial statistical associating fluid theory,” Molecular Physics, 107, 1-17 (2009).
  160. Piyush Srivastava, Walter G. Chapman, Paul E. Laibinis, “Molecular Dynamics Simulation of Oxygen Transport through omega-Alkoxy-n-alkanethiolate Self-Assembled Monolayers on Gold and Copper,” Langmuir, 25, 2689-2695 (2009).
  161. Piyush Srivastava, Walter G. Chapman, and Paul E. Laibinis, “Molecular Dynamics Simulation of Oxygen Transport through n-Alkanethiolate Self-Assembled Monolayers on Gold and Copper,” J. Phys. Chem. B, 113, 456-464 (2009).
  162. Adam Bymaster, Chris Emborsky, Aleksandra Dominik, and Walter G. Chapman, “Renormalization-group corrections to a perturbed-chain statistical associating fluid theory for pure fluids near to and far from the critical region,” Ind. & Eng. Chem. Res., 47, 6264-6274 (2008).
  163. Adam Bymaster,  Shekhar Jain, and Walter G. Chapman, “Microstructure and depletion forces in polymer-colloid mixtures from an interfacial statistical associating fluid theory,” J. Chem. Phys., 128, 164910 (2008).
  164. Shekhar Jain, Prasanna Jog, Jeffrey Weinhold, Rakesh Srivastava, and Walter G. Chapman, “Modified interfacial statistical associating fluid theory: Application to tethered polymer chains,” J. Chem. Phys, 128, 154910 (2008).
  165. Doris L. Gonzalez, Francisco M. Vargas, Walter G. Chapman, and George J. Hirasaki, “Modeling study of CO2-induced asphaltene precipitation,” Energy and Fuels, 22, 757-762 (2008).
  166. Gaurav Bhatnagar, Walter G. Chapman, Gerald R. Dickens, Brandon Dugan, and George J. Hirasaki, “Sulfate-methane transition as a proxy for average methane hydrate saturation in marine sediments,” Geophysical Research Letters, 35, L03611 (2008).
  167. Shekhar Jain, Aleksandra Dominik, and Walter G. Chapman, “Modified Interfacial SAFT:  A perturbation density functional theory for inhomogeneous complex fluids,” J. Chem. Phys., 127, 244904 (2007).
  168. Adam Bymaster, Aleksandra Dominik, and Walter G. Chapman, “Hydration Structure and Interfacial Properties of Water Near a Hydrophobic Solute from a Fundamental Measure Density Functional Theory,” J. Phys. Chem. C, 111, 15823-15831 (2007).
  169. Aleksandra Dominik, Shekhar Jain and Walter G. Chapman, “,” I&EC Research, 46, 5766-5774 (2007).
  170. Clint P. Aichele, Mark Flaum, Tianmin Jiang, George J. Hirasaki, and Walter G. Chapman, “Water in oil emulsion droplet size characterization using a pulsed field gradient with diffusion editing (PFG-DE) NMR technique,” J. Colloid and Interfacial Science, 315, 607-619 (2007).
  171. Gaurav Bhatnagar, Walter G. Chapman, Gerald R. Dickens, Brandon Dugan, and George J. Hirasaki, “Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes,” Amer. J. Science, 307, 861-900 (2007).
  172. Doris L. Gonzalez, George J. Hirasaki, Jeff Creek, and Walter G. Chapman, “Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State,” Energy & Fuels, 21, 1231-1242 (2007).
  173. Aleksandra Dominik, Sandeep Tripathi and Walter G. Chapman, “Bulk and Interfacial Properties of Polymers from Interfacial SAFT Density Functional Theory,” I&EC Research, 45, 6785-6792 (2006).
  174. Matt Yarrison, Kenneth R. Cox, and Walter G. Chapman, “Measurement and Modeling of the Solubility of Water in Supercritical Methane and Ethane from 310 to 477 K and Pressures from 3.4 to 110 MPa,” I&EC Research., 45, 6770-6777 (2006).
  175. Shuqiang Gao, Waylon House, and Walter G. Chapman, “Detecting gas hydrate behavior in crude oil using NMR, ”  J. Phys. Chem. B., 110, 6549-6552 (2006).
  176. Aleksandra Dominik and Walter G. Chapman, “Thermodynamic model for branched polyolefins using the PC-SAFT equation of state,” Macromolecules, 38, 10836-10843 (2005).
  177. Piyush Srivastava, Walter G. Chapman, and Paul E. Laibinis, “Odd-even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane:  A molecular dynamics simulation study,” Langmuir, 21, 12171-12178 (2005).
  178. Shuqiang Gao, Waylon House, and Walter G. Chapman, “NMR and Viscosity Investigation of Clathrate Hydrate Mechanisms,” I&EC Research, 44, 7373-7379 (2005).
  179. Shuqiang Gao, Waylon House, and Walter G. Chapman, “NMR/MRI study of clathrate hydrate mechanisms,” J. Phys. Chem. B., 109, 19090-19093 (2005).
  180. Aleksandra Dominik, Walter G. Chapman, Matthias Kleiner, and Gabriele Sadowski, “Modelling of polar systems with the PC-SAFT equation of state:  Investigation of the performance of two polar terms,” I&EC Research, 44, 6928-6938 (2005).
  181. Sandeep Tripathi and Walter G. Chapman, “Microstructure and thermodynamics of inhomogeneous polymer blends and solutions,” Physical Review Letters, 94, 087801 (2005).
  182. Sandeep Tripathi and Walter G. Chapman, “Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures,” J. Chem. Phys., 122, 94506 (2005).
  183. Aleksandra Dominik, Pallav Jain, and Walter G. Chapman, “Modified thermodynamic perturbation theory for fused-sphere dimer fuids,” Mol. Phys., 103, 1387-1394 (2005).
  184. Doris L. Gonzalez, P. David Ting, George J. Hirasaki, and Walter G. Chapman, “Prediction of Asphaltene Instability under Gas Injection with the SAFT Equation of State”, Energy & Fuels, 19, 1230-1234 (2005).
  185. Auleen Ghosh, Jorg Blaesing, Prasanna Jog, and Walter G. Chapman, “Perturbed Dipolar Chains: A Thermodynamic Model for Polar Copolymers,” Macromolecules, 38, 1025-1027 (2005).
  186. Matt Yarrison and Walter G. Chapman, “A systematic study of methanol + n-alkane vapor–liquid and liquid–liquid equilibria using the CK-SAFT and PC-SAFT equations of state,” Fluid Phase Equilibria, 226, 195-205 (2004).
  187. Auleen Ghosh, P. David Ting, and Walter G. Chapman, “Thermodynamic Stability Analysis and Pressure-Temperature Flash for Polydisperse Polymer Solutions,” I&EC Research, 43, 6222-6230 (2004).
  188. Kyoo Y. Song, Matt Yarrison, and Walter G. Chapman, “Experimental low temperature water content in gaseous methane, liquid ethane, and liquid propane in equilibrium with hydrate at cryogenic conditions,” Fluid Phase Equilibria, 224, 271-277 (2004).
  189. Walter G. Chapman Sharon G. Sauer, P. David Ting and Auleen Ghosh, “Phase Behavior Applications of SAFT based Equations of State – from Associating Fluids to Polydisperse, Polar Copolymers,” Fluid Phase Equilibria, 217, 137-143 (2004).
  190. Sandeep Tripathi and Walter G. Chapman, “Density-functional theory for polar fluids at functionalized surfaces. I. Fluid wall association,” J. Chem. Phys. 119, 12611-12620 (2003).
  191. Sharon Sauer and Walter G. Chapman, “A Parametric Study of Dipolar Chain Theory with Applications to Ketone Mixtures,” Ind. Eng. Chem. Res., 42, 5687-5696 (2003).
  192. Sandeep Tripathi and Walter G. Chapman, “An algorithm for calculating the chemical potential in associating and reacting fluids,” Molecular Physics, 206, 267-286 (2003).
  193. Sandeep Tripathi and Walter G. Chapman, “Adsorption of associating fluids at active surfaces: a density functional theory,” Cond. Matt. Phys., 6, 523-540 (2003).
  194. Sandeep Tripathi and Walter G. Chapman, “A density functional approach to chemical reaction equilibria in nanoscale systems,” J. Chem. Phys., 118, 7993-8003 (2003).
  195. P. David Ting, George J. Hirasaki, and Walter G. Chapman, Modeling of Asphaltene Phase Behavior with the SAFT Equation of State, J. Pet. Sci. Tech., 21, 647-661 (2003).
  196. Auleen Ghosh, Walter G. Chapman, Ray N. French, “Gas solubility in hydrocarbons – a SAFT-based approach,” Fluid Phase Equilibria 209, 229-243 (2003).
  197. P. David Ting, Patrick C. Joyce, Prasanna K. Jog, Walter G. Chapman, and Mark C. Thies, “Phase Equilibrium Modeling of Long-Chain and Short-Chain n-Alkane Mixtures Using Peng-Robinson and SAFT.” Fluid Phase Equilibria, 206, 267-286 (2003).
  198. Auleen Ghosh and Walter G. Chapman, “SAFT Modeling of the Effect of Various Carriers on the Operating Range of Slurry Reactors,” Ind. Eng. Chem. Res. 41, 5529-5533 (2002).
  199. Prasanna K. Jog, Walter G. Chapman, Sumnesh K. Gupta, and Robert D. Swindoll, “Modeling of Liquid-Liquid Phase Separation in Linear Low Density Polyethylene-Solvent Systems Using the SAFT Equation of State,” Ind. Eng. Chem. Res., 41, 887-891 (2002).
  200. Prasanna K. Jog and Walter G. Chapman, “An Algorithm for Calculation of Phase Equilibria in Polydisperse Polymer Solutions,” Macromolecules, 35, 1002-1011 (2002).
  201. Prasanna K. Jog, Sharon G. Sauer, Jorg Blaesing, and Walter G. Chapman, “Application of Dipolar Chain Theory to the Phase Behavior of Polar Fluids and Mixtures,” I&EC Research, 40, 4641-4648 (2001).
  202. Yurko Duda, Lloyd L. Lee, Yurij Kalyuzhnyi, Walter G. Chapman, and P. David Ting, “Structure and bridge functions of fused-sphere dimeric fluids,” Chem. Phys. Lett., 339, 89-95 (2001).
  203. Yurko Duda, Lloyd L. Lee, Yurij Kalyuzhnyi, Walter G. Chapman, and P. David Ting, “Structures of fused-dimer fluids:  A new closure based on the potential distribution theorems,” J. Chem. Phys., 114, 8484-8491 (2001)).
  204. Chad J. Segura, Jie Zhang and Walter G. Chapman, “Binary Associating Fluid Mixtures against a Hard Wall:  Density Functional Theory and Simulation,” Mol. Phys., 99, 1-12 (2001).
  205. Keshawa P. Shukla and Walter G. Chapman, “TPT2 and SAFTD Equations of State for Mixtures of Hard Chain Copolymers,” Mol. Phys., 98, 2045-2052 (2000).
  206. Prasanna K. Jog and Walter G. Chapman, “Application of Wertheim’s Thermodynamic Perturbation Theory to Dipolar Hard Sphere Chains,” Mol. Phys.97, 307-319 (1999).
  207. Prasanna K. Jog, Alejandro Garcia-Cuellar and Walter G. Chapman, “Extensions and Applications of the SAFT Equation of State to Solvents, Monomers, and Polymers,” Fluid Phase Equilibria, 158-160, 321-326 (1999).
  208. Alejandro Garcia-Cuellar and Walter G. Chapman, “Solvent Effects in Model Telechelic Polymers,” Mol. Phys., 96, 1063-1074 (1999).
  209. Yurko Duda, Chad J. Segura, Eduard V. Vakarin, M.F. Holovko, and Walter G. Chapman, “Network forming fluids:  Integral equations and Monte Carlo simulations,” J. Chem. Phys., 108, 9168-9176 (1998).
  210. Chad J. Segura, Eduard V. Vakarin, Walter G. Chapman, and M.F. Holovko, “A comparison of density functional and integral equation theories versus Monte Carlo simulations for hard sphere associating fluids near a hard wall,” J. Chem. Phys., 108, 4837-4848 (1998).
  211. Keshawa P. Shukla and Walter G. Chapman, “A Two Fluid Theory for Chain Fluid Mixtures from Thermodynamic Perturbation Theory,” Mol. Phys., 93, 287-293 (1998).
  212. Keshawa P. Shukla and Walter G. Chapman, “SAFT Equation of State for Fluid Mixtures of Hard Chain Copolymers,” Mol. Phys., 91, 1075-1081 (1997).
  213. Chad J. Segura, Walter G. Chapman, and Keshawa P. Shukla, “Associating Fluids with Four Bonding Sites Against a Hard Wall:  Density Functional Theory,” Mol. Phys., 90, 759-771 (1997).
  214. Alejandro Garcia-Cuellar, Dhananjay Ghonasgi, and Walter G. Chapman, “Competition between Intermolecular and Intramolecular Association in Polyatomic Molecules:  Theory and Simulation,” Fluid Phase Equilibria, 116, 275-281 (1996).
  215. L.L. Lee, L.-J. Lee, D. Ghonasgi, M. Llano-Restrepo, W.G. Chapman, K.P. Shukla, and E. Lomba, “Theory and Simulation for Electrolyte Solutions:  Applications to the Phase Equilibria of mixed solvent systems,” Fluid Phase Equilibria, 116, 185-192 (1996).
  216. Lloyd L. Lee, Mario Llano-Restrepo, Walter G. Chapman, and Keshawa P. Shukla, “Improved MSA Theory for Concentrated Electrolyte Solutions Based on Monte Carlo Simulation at High Ionic Strengths,” J. of The Chin. I. Ch. E., 27, 213-233 (1996).
  217. C. J. Segura and W.G. Chapman, “Associating Fluids with Four Bonding Sites against Solid Surfaces:  Monte Carlo Simulations,” Mol. Phys., 86, 415442 (1995).
  218. C.A. Glandt and W.G. Chapman, “Effect of Water Dissolution on Oil Viscosity,” SPE Reservoir Engineering, 10, 5964 (February 1995).
  219. D. Ghonasgi and W.G. Chapman, “Competition between Intermolecular and Intramolecular Association in Flexible Hard Chain Molecules,” J. Chem. Phys., 102, 25852592 (1995).
  220. M. Llano-Restrepo and W.G. Chapman, “Bridge Function and Cavity Correlation Function from Simulation:  Implications on Closure Relations,” Inter. J. Thermophys., 16, 319326 (1995).
  221. D. Ghonasgi, V. Perez, and W.G. Chapman, “Prediction of the Thermodynamic Properties of Complex Polyatomic Hydrogen Bonding Fluids,” Inter. J. Thermophys., 16, 715722 (1995).
  222. Yu. V. Kalyuzhnyi, G. Stell, M. Llano-Restrepo, W.G. Chapman, and M.F. Holovko, “Primitive Models of Chemical Association. I. Theory and Simulation for Dimerization,” J. Chem. Phys., 101, 79397952 (1994).
  223. D. Ghonasgi, V. Perez, and W.G. Chapman, “Intramolecular Association in Flexible Hard Chain Molecules,” J. Chem. Phys., 101, 68806887 (1994).
  224. D. Ghonasgi and W.G. Chapman, “Theory and Simulation for Associating Hard Chain Fluids,” Molec. Phys., 83, 145158 (1994).
  225. M. Llano-Restrepo and W.G. Chapman, “Monte Carlo simulation of the structural properties of concentrated aqueous alkali halide solutions at 25 C using a simple civilized model,” J. Chem. Phys. 100, 83218339 (1994).
  226. M. Llano-Restrepo and W.G. Chapman, “Bridge Function and Cavity Correlation Function for the Soft Sphere Fluid from Simulation:  Implications on Closure Relations,” J. Chem. Phys., 100, 51395148 (1994).
  227. D. Ghonasgi and W.G. Chapman, “A New Equation of State for Hard Chain Molecules,” J. Chem. Phys. 100, 66336639 (1994).
  228. D. Ghonasgi and W.G. Chapman, “Prediction of the Properties of Model Polymer Solutions and Blends,” AIChE Journal, 40, 878887 (1994).
  229. D. Ghonasgi, M. Llano-Restrepo, and W.G. Chapman, “Henry’s Law Constant for Diatomic and Polyatomic Lennard-Jones Molecules,” J. Chem. Phys., 98, 56625667 (1993).
  230. D. Ghonasgi and W.G. Chapman, “Theory and Simulation of Associating Chain Fluids,” Molec. Phys., 80, 161176 (1993).
  231. P. Etesse, W.G. Chapman, and R. Kobayashi, “Nuclear Magnetic Resonance Measurement of Spin-lattice Relaxation and Self-diffusion in Supercritical CO2-n-hexadecane Mixtures,” Molec. Phys., 80, 11451164 (1993).
  232. D. Ghonasgi and W.G. Chapman, “Theory and Simulation for Associating Fluids with Four Bonding Sites,” Molec. Phys., 79, 291311 (1993).
  233. M. LLano-Restrepo and W.G. Chapman, “Bridge Function and Cavity Correlation Function for the LJ Fluid from Simulation,” J. Chem. Phys., 97, 20462054 (1992).
  234. W.G. Chapman, “Prediction of the Thermodynamic Properties of Associating Lennard-Jones Fluids: Theory and Simulation,” J. Chem. Phys., 93, 42994304 (1990).
  235. W.G. Chapman, K.E. Gubbins, G. Jackson, and M. Radosz, “New Reference Equation of State for Associating Liquids,” I&EC Research, 29, 17091721 (1990).
  236. W.G. Chapman, K.E. Gubbins, G. Jackson, and M. Radosz, “SAFT:  Equation ofState Solution Model for Associating Fluids,” Fluid Phase Equilibria, 52, 3138 (1989).
  237. G. Jackson, W.G. Chapman, and Keith E. Gubbins, “Phase Equilibria of Associating Fluids:  Chain Molecules with Multiple Bonding Sites,” Proceedings of the International Symposium on Thermodynamics in Chemical Engineering and Industry, Beijing, China, June 1988.
  238. G. Jackson, W.G. Chapman, and Keith E. Gubbins, “Phase Equilibria of Associating Fluids of Spherical and Chain Molecules,” Int. J. Thermophys., 9, 769779 (1988).
  239. Walter G. Chapman, George Jackson, and Keith E. Gubbins, “Phase equilibria of associating fluids  Chain molecules with multiple bonding sites,” Molec. Phys., 65, 10571079, (1988).
  240. George Jackson, Walter G. Chapman, and Keith E. Gubbins, “Phase equilibria of associating fluids  Spherical molecules with multiple bonding sites,” Molec. Phys., 65, 131, (1988).
  241. William R. Adams, John A. Zollweg, William B. Streett, Walter G. Chapman, Paulette Clancy, “The Excess Enthalpy of a Mixture of Krypton and Xenon: Experiment and Theory,” Fluid Phase Equilibria, 40, 247257, (1988).
  242. C.G. Joslin, C.G. Gray, W.G. Chapman, and K.E. Gubbins, “Theory and Simulation of Associating Liquid Mixtures II,” Molec. Phys., 62, 843860, (1987).
  243. W.G. Chapman, K.E. Gubbins, C.G. Joslin, and C.G. Gray, “Mixtures of Polar and Associating Molecules,” Pure & Appl. Chem., 59, 5360, (1987).
  244. P. Gopal, W.G. Chapman, J.A. Zollweg, P. Clancy, and W.B. Streett, “Excess Enthalpies of {xN2 + (1x)CO}(l) at 83.82 K: Experiment and Theory,” J. Chem.  Thermodyn., 19, 527534, (1987).
  245. W.G. Chapman, K.E. Gubbins, C.G. Joslin, and C.G. Gray, “Theory and Simulation of Associating Liquid Mixtures,” Fluid Phase Equilibria, 29, 337346, (1986).
  246. W. Chapman and N. Quirke, “Metropolis Monte Carlo Simulation of Fluids with Multiparticle Moves,” Physica 131B, 3440, (1985).